X-PAD Ultimate FAQ Series

Scaled State Plane Coordinates: Method \#2
More FAQ's like this one are available here: [X-PAD FAQ Series]
Date: 16 December 2021 By: Mark Silver, ms@igage.com
Filename: XPAD_SPC_Ground_R003.docx
Note: X-PAD Version 4.6.015 or higher may be required to complete this procedure successfully and match the provided screen shots.

Thesis

This FAQ shows how to replicate a State Plane Coordinate system brought to Ground, matching an SPC basis of bearings between two points. This is method \#2 of a series of 3 methods.

This method is the preferred method as it balances distortion around the Base point by making the projected plane orthogonal to the plumb line at the Base point.

Method \#2:

This method sets an Oblique Mercator projected surface at the center point and rotated to match State Plane Convergence. As you move from the center point, this method produces less distortion than scaling a SPC system from the SPC origin because the projected surface is orthogonal to the earth center vector at the Base point, instead of tilted back to the SPC zone center.

Let's work a full example for a couple of points in Washington City Utah:

Throughout this FAQ I will highlight coordinate values that we will need to complete the new projection.

```
Western Point, the Base Point:
Lat Lon Ellipsoid: }370748.88043 N 113 30 35.44965 W NAD
    2786.820 Ft orthometric; 2706.895 (825.062 m) ellip
```

UT South SPC (sFeet): 10,017,594.0413 SFt N 1,054,514.4670 SFt E UTS NAD83

```
```

```
UT South SPC (sFeet): 10,017,594.0413 SFt N 1,054,514.4670 SFt E UTS NAD83
```

```

We don't want to confuse future surveyors with coordinates that are nearly identical to SPC coordinates, lets choose coordinates that do not match the SPC coordinates by only using the 6 digits of the SPC coordinates:

Truncated Local Coord: \(017,594.0413\) SFt N 054,514.4670 SFt E

However, because the leading digit is 0 , our new coordinate system would have a negative Northing if we moved south more than 3.3 miles and a negative Easting if we move west more than 10.3 miles; so, let's just make the leading digits 5 and 3 . This will also clearly distinguish the Northing values (which will start with 5 ) and Easting values (which will start with 3):

Adj Truncated Local Coord: 517,594.0413 SFt N 354,514.4670 SFt E
These will be the desired Northing and Easting coordinates for the Base Point in our new system. They are close enough 'looking' to the SPC coordinates to remind us and future surveyors where they were derived from.

Eastern Point:
Lat Lon Ellipsoid:
\(\begin{array}{rrrr}377 & 48.57847 \mathrm{~N} 113 & 30 & 0.41208 \text { W NAD83 } \\ 2804.71 & \text { Ft orthometric } & 2724.847 \text { ellipsoid }\end{array}\)
UT South SPC (sFeet): \(10,017,502.6769 \mathrm{SFt} N \quad 1,057,350.6039\) SFt E UTS NAD83

Make a new job in X-PAD, select the matching SPC coordinate system as the Cartographic system:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\lambda_{0}\) Cartographic system} \\
\hline \multicolumn{2}{|l|}{PROLECTIONE... PA} & metres \\
\hline \multicolumn{3}{|l|}{Projection, Datum \& Ellipsoid} \\
\hline \multicolumn{3}{|l|}{Name UTr3 - South} \\
\hline Projection & Lamber 2SP & \(\cdots\) \\
\hline Datum & NAD83 & 1 \\
\hline \multicolumn{3}{|l|}{Ellipoid GRs80 >} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline ব & \# & \\
\hline & & Acoent \\
\hline
\end{tabular}

Then go to JOB : Points and enter the Base point as point \#1 and the East point as point \#2 by moving the WGS84 slider to ON and entering the Lat and Lon values:


COORDIN... PROPERTI... SKET

\begin{tabular}{|c|c|}
\hline WGS84 & I \\
\hline Geodetic coords & Latitude-Longitude- \(V\) \\
\hline Latitude & N 37 \({ }^{\circ} 07^{\prime} 48.880430 '\) \\
\hline Longitude & W 113 \({ }^{\circ} 30^{\prime} 35.449650{ }^{\prime \prime}\) \\
\hline Height & 2706.895ft \\
\hline
\end{tabular}

Xín Edit point [2]
COORDIN... PROPERTI... SKET
\begin{tabular}{|l|r|}
\hline \multicolumn{2}{|c|}{ Point } \\
\cline { 2 - 2 } & 2 \\
\hline N & 10017502.6773 ft \\
\hline E & 1057350.6039 ft \\
\hline Z & 2804.710 ft \\
\hline
\end{tabular}

\(\leftrightarrow \underset{\text { Prev }}{\vee} \quad \underset{\text { Next }}{\vee} \quad\)\begin{tabular}{c} 
Accept
\end{tabular}

Go to COGO: Quick distance and inverse from point 1 to point 2:


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Distance unit: Feet (US)} \\
\hline \multicolumn{2}{|l|}{1-2} \\
\hline Distance (Grid) 2D & 2837.608 ft \\
\hline 3D & 2837.664 ft \\
\hline Height diff. & 17.890 ft \\
\hline Bearing & \[
\begin{array}{r}
\mathrm{S} 88^{\circ} 09^{\prime} 1 \\
7.607960^{\prime \prime}
\end{array}
\] \\
\hline Slope & 0.63\% \\
\hline \(\Delta N\) & -91.3643ft \\
\hline \(\Delta \mathrm{E}\) & 2836.1369 ft \\
\hline  & Report \\
\hline
\end{tabular}

Make a note of the 2D Grid distance and the Grid bearing:
\[
2837.608 \mathrm{sft}(G R I D) \quad \mathrm{S} 880917.6037 \mathrm{E}
\]

\section*{Projection Goal}

After we build our new projected system, we will be successful if the projected coordinates for the Base Point Lat/Lon match (5) and the inverse from the West Base point to the East point is the Ground Distance (slightly longer than the Grid distance) at the bearing shown in (8).

\section*{Compute an elevation scale factor (ellipsoidal reduction) for the Base Point}

You could use an approximation, but it will be best to compute the elevation scale factor using this equation for the earth radius at a latitude:
\[
\begin{align*}
& r=\frac{a \sqrt{1-e^{2}}}{1-e^{2} \sin ^{2} \phi} \quad \text { where, for GRS } 1980 \text { (and NAD83); } \\
& \mathrm{a}=\text { semi-major axis (radius of equator) }=6,378,137.000 \mathrm{~m} \\
& \mathrm{e}^{2}=\text { eccentricity squared }=0.00669438002290 . \\
& \phi=\text { geodetic latitude. } \tag{9}
\end{align*}
\]

The easiest way is to use my 'Ellipsoid Reduction' tool which you can obtain here:
https://iggps.com/out/utilities/EllipsoidialReduction/index.htm
Enter the Latitude and Ellipsoid Elevation of the Base point:


Radius at \(37648.88046 \mathrm{~N}=6,372,283.754,6\) meters
The tool also computes the elevation scale factor at 825.062 m (ellipsoid height), which is what we really want:

Elevation Grid to Ground SF: 1.000,129,476,657
This will be the scale for our new custom projection.
Note: this is NOT a Combined Scale Factor for the State Plane projection. It is the ellipsoid reduction factor and would need to be combined with the grid scale factor at the Base point to get the CSF.

A new Cartographic system in X-PAD
Return to the Cartographic system and change the Name to 'WashingtonCity' and the Projection to 'Hotine Oblique Mercator':



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Projection parameters} \\
\hline Origin Lat & N 3707'48.880043' \\
\hline Origin Lon. & W 113 \({ }^{\circ} 30^{\prime} 35.449650{ }^{\prime \prime}\) \\
\hline False East & 0.0000 ft \\
\hline False North & 0.0000 ft \\
\hline Scale & 1.000129477 \\
\hline Azimuth & S \(0^{\circ} 00^{\prime} 00.000000 "\) \\
\hline Rect.grid angle & S 0 \({ }^{\circ} 00^{\prime} 00.000000^{\prime \prime}\) \\
\hline
\end{tabular}

On the PARAMETERS tab, set the Origin Lat to the Latitude of our Base point, set the Origin Lon to the Longitude of our Base point and set the Scale to the ellipsoid elevation scale factor. For now, set the False Easting and False Northing to 0 and both the Azimuths to 0.0 degrees.

Click on Accept to save the new projection. X-PAD will recompute the projected coordinates for point 1 and point 2 based on this new, temporary projection.

You could look at them if you want to verify that 'something' happened:


However, we need to configure the projection azimuth before we make use of the coordinates.
Go to the COGO: Quick Distance screen and compute the inverse from point 1 to point 2:


Note: the 2D distance is a valid Ground distance now.

The displayed Bearing:
Bearing
S 892310.517634 E

Is the Geodetic North bearing from Point 1 to Point 2. We need to compute the rotation required to match the state plane bearing:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TN & S & 89 & 23 & 10.517634 & E & 89.38625489 S & SE & (D.d & Bearing) & (13) \\
\hline Want & \multirow[t]{3}{*}{S} & \multirow[t]{3}{*}{88} & \multirow[t]{3}{*}{09} & \multirow[t]{3}{*}{17.603700} & \multirow[t]{3}{*}{E} & 88.15488992 S & SE & (D.d & Bearing) & (14) \\
\hline \multirow[t]{2}{*}{Delta} & & & & & & 1.231364970 & (D. & & & (15) \\
\hline & & & & & & 011352.9138 & 89 & ( D M & S.s) & (16) \\
\hline
\end{tabular}

Note: it is a positive rotation angle from S 89.4 E to S 88.2 E. Also note that this TN to Projected bearing is not the SPC convergence at the Base point.

Return to the Coordinate System: Cartographic system and set the Rectangular grid angle to 0113 52.91389:



Subtract the current coordinates (17) from the desired coordinates (5) to compute the False Northing and Easting (18):
```

Want

- Current 13,525,443.5457 N 290,725.1137 E
= False
-13,007,849.5044 N +63,789.3533 E

```
(5)
(18)

Return to the 'Cartographic system: PARAMETERS' screen and enter the False Northing and Easting (18):


Return to the Point list and verify that Point 1 has the correct Northing and Easting:

COORDIN... PROPERTI... SKET
\begin{tabular}{|c|c|}
\hline Point & 1 \\
\hline N & 517594.0413ft \\
\hline E & 354514.4670ft \\
\hline Z & 2786.820ft \\
\hline WGS84 & I \\
\hline Geodetic coords & Latitude-Longitude- \(\checkmark\) \\
\hline Latitude & N 37º \(07^{\prime} 48.880430{ }^{\prime \prime}\) \\
\hline Longitude & W \(113^{\circ} 30^{\prime} 35.449650{ }^{\prime \prime}\) \\
\hline Height & 2706.895ft \\
\hline \(\checkmark\) & \begin{tabular}{ccc} 
Prev & Next & \(\boldsymbol{\text { Accept }}\)
\end{tabular} \\
\hline
\end{tabular}

Go to the COGO: Quick distance tool and compute an inverse between point 1 and point 2:


If the system is correct, the distance will be the Ground distance (scaled for the Base point) and the bearing will match the SPC grid bearing:
\[
\begin{equation*}
\mathrm{S} 880917.6037 \mathrm{E} \tag{8}
\end{equation*}
\]

\section*{Success!}

\section*{Save your work!}

Immediately after verifying that the system is correct, return to 'Coordinate System' menu, click on Tools, then click on Save as predefined to add this coordinate system the 'predefined coordinate system' list.```

