Aligning a System to Two Points at Ground

Date: 4 October 2021 By: Mark Silver, ms@igage.com

Thesis

We have two points in the centerline of a roadway that runs generally East-West. We would like to build a local system based on the West point and use a 'generally accepted' truncated State Plane coordinate for this Western point. The Eastern point is an unknown distance from the Western point, we would like to build a Ground System with the Eastern Point at the Cardinal N90E direction. In this case, the Eastern point will be used for Bearing only. The computed Grid to Ground scale factor will be used for the new system.

Western Point:

```
Lat Lon Ellipsoid:
UT South SPC (sFeet):
Truncated Local Coord:
```

37 7 48.88043 N 113 30 35.44965 W NAD8

```
37 7 48.88043 N 113 30 35.44965 W NAD8
2786.82 Ft Ellipsoid
2786.82 Ft Ellipsoid
1,054,514.467 SFEET E 10,017,594.041 SFEET N UTS NAD83
1,054,514.467 SFEET E 10,017,594.041 SFEET N UTS NAD83
    54,514.467 SFEET E 17,594.041 SFEET N
```

 54,514.467 SFEET E 17,594.041 SFEET N
    ```
```

37 7 48.57847 N 113 30 0.41208 W NAD83

```
37 7 48.57847 N 113 30 0.41208 W NAD83
2804.71 Ft Ellipsoid
```

```
2804.71 Ft Ellipsoid
```

```

\section*{Solution}

Make a new job, the initial coordinate system does not matter, so we will use the underlying nominal SPC zone 'Utah South NAD83' with GEOID18 loaded:


From the Main Menu, JOB (tab) click on Points/Measurements/Codes, then click on +Add, then enter Point 100 using Lat/Lon/EllipH:


Click Accept, then add the Eastern Point using Lat/Lon/EllipH as Point 101:


We now have two points defined in our point list:



We can use the CAD, Info, Distance tool to compute the Grid distance between \(100->101\) :


The Grid distance is 2837.610 USFeet. We don't need this distance, but it will be useful for comparison in the next step.

Now, let's build a Single Point Ground system and compute the Ground distance between these two points. Go back to the Main Menu, JOB tab, then click on GNSS Localization then

Local - Single point:


Click on the black Details button to the right of Local - Single Point. X-PAD will ask for the Local system - Single point geographic position. Use the \(>\) button to the right of GNSS Point to recall

Point 100:


GNSS Position
\begin{tabular}{l|r|}
\hline GNSS Point & \multicolumn{1}{l|}{100} \\
\hline Latitude & N \(37^{\circ} 07^{\prime} 48.88043^{\prime \prime}\) \\
\hline Longitude & W 113 \({ }^{\circ} 30^{\prime} 35.44965^{\prime \prime}\) \\
\hline Height & 2786.82 ft \\
\hline
\end{tabular}

Define a GNSS position in one of the following methods: - Measure a new GNSS position and assign a name to the point - Select an existing point with valid GNSS coordinates
- Enter the GNSS coordinates and assign a name to the point


Click on the Next (right arrow) at the bottom. XPAD will show the computed State Plane

Coordinates for Point 100.:



We want to truncate the SPC position such that only 5 significant places to the left of the decimal-point remain.

Click on the >, choose New point and enter point 102 with the new local coordinates:


Click on Accept.

The truncated Local Coordinate will be shown:




Click the Next (right-arrow button) at the bottom.

Select an appropriate GEOID:


Then click Accept.

X-PAD will show that the GNSS Localization is Local Single Point with the selected GEOID:


Return to CAD, Info, Distance and compute the distance from 100 to 101:

\begin{tabular}{|lrr}
\hline \multicolumn{1}{|l}{ Result } \\
\hline Distance & 2D & 2837.941 ft \\
\hline & 3D & 2837.997 ft \\
\hline & \(\Delta \mathrm{N}\) & -30.399 ft \\
\hline & \(\Delta \mathrm{E}\) & 2837.778 ft \\
\hline Height...erence & 17.83 ft \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Bearing & \begin{tabular}{r} 
S \\
\\
\\
\\
Zenith
\end{tabular} \\
\hline Slope & \(89^{\circ} 23^{\prime} 10.5176^{\prime \prime}\) \\
\hline & \\
\hline Point1 & \(0.63 \%\) \\
\hline Code & 100 \\
\hline
\end{tabular}
\(\triangleleft\)

The Ground distance is 2837.94 USFeet, the Grid distance was 2837.610 USFeet. This is correct for this elevation and grid location.

We now would like to build a 2-point localization where the Eastern point has the same Northing, but the Easting is 2837.94 larger than the Western point.
\[
54514.463+2837.94=57352.403
\]

Go to the Main Menu, JOB (tab), Points, Measurements, Codes and add a fourth point

103:


\section*{Click Accept.}

We now have two Geographic Coordinates and two projected points to build a complete system with. Return to the Main Menu, Coordinate System, GNSS Localization and select Local Site calibration, then click the black Details button. The Local system-Multi points dialog is
shown:


No calibration points available. Press Add button to insert a point.


Add two points:
\begin{tabular}{ll} 
GNSS Position 1 & 100 \\
Local Coordinate 1: & 100 \\
GNSS Position 2: & 101 \\
Local Coordinate 2: & 103
\end{tabular}

\section*{Local Coordinate 1: 100}

Local Coordinate 2: 103

The Local system-Multi points dialog will reflect these selections and show a Scale factor: 1.0001:


Uncheck the second point-pair's Vertical checkbox to prevent building a tilted-plane system.

Click the Next button (right-arrow), the Coordinate System, System Type will be shown, click the Next button at the bottom again and choose an appropriate Geoid, finally click Accept.

Note: If you don't continue through by clicking the right-arrow, then click on Accept your changes will not be kept!

If you think that you might want to reuse this system, click on Tools, then Save current system and give the new system a reasonable name.

Finally, return to the CAD screen and compute the distance from Point 100 to Point 101:


The distance is Ground (2837.940 USFeet) and the bearing is cardinal East as we desired.

Now that we have the desired Ground System defined from point 100, we can still use
background maps:


Coordinate System Report
You can write a Coordinate System report from Main Menu, JOB (tab), Coordinate System, Tools, Report:

Coordinate
Job Demo2.gfd4 Date: 04-10-21 Time: 13:15
\begin{tabular}{|c|c|}
\hline System type: & Cartographic \\
\hline Name & UT83-South \\
\hline Projection & LAMBERT_2SP \\
\hline DATUM & \\
\hline Name & NAD83 \\
\hline Shift.X & 0.000000 ft \\
\hline Shift.Y & 0.000000 ft \\
\hline Shift.Z & 0.000000 ft \\
\hline Rot.X & 0.000000000 \\
\hline Rot.Y & 0.000000000 \\
\hline Rot.Z & 0.000000000 \\
\hline Scale & \(1-0.000 \mathrm{ppm}\) \\
\hline
\end{tabular}
ELLIPSOID
Name GRS80
A \(\quad 20925604.474 \mathrm{ft}\)

Inv.Flat. 298.257222101
System type: Multiple points
Transformation: Conformal (with scale variation)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Name & \[
\begin{gathered}
\text { Use } \\
\text { H } \\
\text { V }
\end{gathered}
\] & \multicolumn{2}{|l|}{\begin{tabular}{cc} 
& WGS84 / ETRS89 \\
Latitude & Longitude \\
ECEF X & ECEF Y
\end{tabular}} & Height ECEF Z & \multicolumn{3}{|l|}{N \begin{tabular}{cc} 
UT83 - South & \\
E & Z \\
& \begin{tabular}{lll} 
Calculated \\
Reference \\
Difference
\end{tabular} \\
& \\
&
\end{tabular}} \\
\hline 100 & Yes & N 37 \({ }^{\circ} 07^{\prime} 48.88043^{\prime \prime}\) & & 2786.82 ft & 17594.039ft & 54514.463 ft & 2866.75 ft \\
\hline & Yes & -6664081.705ft & -15319138.251ft & 12563753.72ft & \[
\begin{array}{r}
17594.039 \mathrm{ft} \\
0.000 \mathrm{ft} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
54514.463 \mathrm{ft} \\
0.000 \mathrm{ft}
\end{array}
\] & \[
\begin{array}{r}
2866.75 \mathrm{ft} \\
0.00 \mathrm{ft}
\end{array}
\] \\
\hline 101 & Yes & N 37 \({ }^{\circ} 07^{\prime} 48.57847^{\prime \prime}\) & & 2804.71 ft & 17594.039 ft & 57352.403 ft & 2884.64 ft \\
\hline & No & -6661492.433ft & -15320300.025ft & 12563740.17ft & \[
\begin{array}{r}
17594.039 \mathrm{ft} \\
0.000 \mathrm{ft} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
57352.403 \mathrm{ft} \\
0.000 \mathrm{ft} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2866.75 \mathrm{ft} \\
117.89 \mathrm{ft} \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Shift.X & -677584.749284 ft \\
Shift.Y & -10028139.986454 ft \\
Rot.X & \(1^{\circ} 50^{\prime} 42.391908584^{\prime \prime}\)
\end{tabular}
\begin{tabular}{ll} 
Scale & \(1+116.965 p p m\) \\
Barycenter \\
N0 & 10045734.025 ft \\
E0 & 733518.182 ft \\
Elevations: \(\quad\) Geoid \\
Geoid: & GEOID2018US
\end{tabular}

Hint: Non-Cardinal Bearings
In the previous example, we computed the Easting coordinate of the second local point by adding the desired Ground distance to the Easting coordinate of the first point.

What if we wanted to have that bearing actually be some other, non-cardinal, bearing?

You can use the CAD, Draw, Layout drawing tool to add a new point at some distance - bearing from the first point (100):

\begin{tabular}{|c|c|c|c|}
\hline Draw & Line & & \(\checkmark\) \\
\hline Point & 100 & & \(>\) \\
\hline Bearing & \(\checkmark\) & S 89 \({ }^{\circ} 22^{\prime} 4\) 入 & \(\rangle\) \\
\hline Increment & & \(90^{\circ} 00^{\prime} 00.0000^{\prime \prime}\) & \(\rangle\) \\
\hline Length & & 2837.940 ft & \(>\) \\
\hline \(\Delta\) Elevation & & 0.00 ft & \(\rangle\) \\
\hline Stop & & & d point \\
\hline
\end{tabular}

After clicking Add point, a new point the desired Ground distance at the entered bearing (S 892244 \(E\) above) can then be used as the \(2^{\text {nd }}\) point's Local Coordinate.```

